Estimation of Vehicle Trajectories with Locally Weighted Regression
نویسندگان
چکیده
laborious. In particular, under congested conditions, manual processing may be required, since automated approaches fail to identify the vehicles reliably. As a result, there may be measurement errors as well as missing data points in the extracted data set. A method is proposed here to perform the task of extracting useful information from position data efficiently while the ability to recover missing data points is retained. The method is based on smoothing of the data by using locally weighted regression (1, 2, 3, pp. 10–49).
منابع مشابه
Multivariate Locally Weighted Polynomial Fitting and Partial Derivative Estimation
Nonparametric regression estimator based on locally weighted least squares fitting has been studied by Fan and Ruppert and Wand. The latter paper also studies, in the univariate case, nonparametric derivative estimators given by a locally weighted polynomial fitting. Compared with traditional kernel estimators, these estimators are often of simpler form and possess some better properties. In th...
متن کاملLocally Weighted Polynomial Estimation of Spatial Precipitation
We demonstrate the utility of locally weighted polynomial regression, a nonparametric technique for surface estimation discussed in Lall et al. (1995), for the spatial estimation of precipitation surface, with data related to the Chernobyl nuclear power plant accident. The method uses multivariate, locally weighted polynomial regression with temperature or precipitation as the dependent variabl...
متن کاملA Family of Geographically Weighted Regression Models
A Bayesian treatment of locally linear regression methods introduced in McMillen (1996) and labeled geographically weighted regressions (GWR) in Brunsdon, Fotheringham and Charlton (1996) is set forth in this paper. GWR uses distance-decay-weighted sub-samples of the data to produce locally linear estimates for every point in space. While the use of locally linear regression represents a true c...
متن کاملComparison of the Performance of Geographically Weighted Regression and Ordinary Least Squares for modeling of Sea surface temperature in Oman Sea
In Marine discussions, the study of sea surface temperature (SST) and study of its spatial relationships with other ocean parameters are of particular importance, in such a way that the accurate recognition of the SST relationships with other parameters allows the study of many ocean and atmospheric processes. Therefore, in this study, spatial relations modeling of SST with Surface Wind Speed (...
متن کاملParameter Estimation of Geographically Weighted Trivariate Weibull Regression Model
In this study, Geographically Weighted Trivariate Weibull Regression (GWTWR) model and parameter estimation procedure are proposed. GWTWR is trivariate Weibull regression model which all of the regression parameters depend on the geographical location, and parameter estimation is done locally at each location in the study area. The location is expressed as a point coordinate in two-dimensional ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007